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Abstract: The propagation of shear (S) and
compression (P) waves within the earth allows
geologists to track seismic events and to identify
subterranean structure. Highly specialized
geological based computer programs developed
have been instrumental in determining the
location and characteristics of natural
phenomena (e.g., earthquakes) and man-made
activity (e.g., nuclear-blast tests). Use of these
internally developed programs requires regular
maintenance, and the reliance on supercomputers
limits broad accessibility. This paper seeks to
demonstrate that commercially available
software running on desktop computational
resources can provide accurate solutions to an
important subset of problems associated with
wave propagation in the geophysical domain.
The work presented here uses COMSOL
Multiphysics to solve the equilibrium equations
for a time-varying system using the finite
element method. This work focuses on
developing a benchmark solution of a
homogeneous half-space loading with an impact
and develops a general closed-form solution
against which to compare the computational
results. These results show the ability to resolve
both S and P wave across the computational
domain. Thus, COMSOL Multiphysics running
on desktop computational resources provides
sufficiently accurate results for critical
geophysical wave propagation problems.

Keywords: Geophysics, shear wave, pressure
wave, seismic.

1. Introduction

Scientists and engineers that seek to understand
elastic wave propagation in geological structures
typically consider the generic problem of a
seismic wave that is generated at a source,
propagates through a media, and is measured at a
receiver. Some researchers are concerned with
natural sources, e.g. earthquakes, while others
focus on man-made sources, e.g. explosions.

Some who study these areas seek to understand
the nature of the source, while others use well
characterized sources and seek to characterize
the medium. These researchers may be seeking
to predict future earthquakes, locate natural
resources, or identify and locate specific human
activities. However, in all these cases, the
overarching physics of elastic wave propagation
in a solid medium remain the same.

Seismic waves propagating in bulk material do
S0 as either compressional waves, P, where
material translates in the direction of wave
propagation, and shear waves, S, where material
translates perpendicular to the direction of wave
propagation. P-waves travel faster than S-waves.
Another important class of waves is surface
waves; these waves develop due to an energy
concentration near the Earth’s surface and
consequently propagate in two dimensions. As
such, surface waves decay as 1/r while body
waves decay as 1/r” due to their propagation in
three-dimensions. Thus, energy measured at a
near-surface receiver located a significant
distance from the source is dominated by surface
waves. Typically, these types of waves are
referred to as either Love or Rayleigh waves.
Love waves are shear waves that have been
polarized in the horizontal direction (parallel to
the Earth’s surface) while Rayleigh waves are a
mixture of P waves and S waves that have been
polarized in the vertical direction.

Geophysics studies typically use specialized
computer software running on supercomputers to
simulate wave propagation in geophysical
domains. This work demonstrates that a finite
element based software package that is
commercially available, COMSOL Multiphysics,
solves these wave propagation problems using
readily available desktop computational
hardware.
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2. Method

This work uses the Structural Mechanics Module
available in COMSOL Multiphysics to develop
computational models for a range of problems.

These models increase with complexity ranging
from a simple point source in an infinite solid to
a volume source that represents experimentally
measure forces applied in a layered half-space.

2.1 Point Source in an Infinite Media

Initially, this work focuses on modeling a point
source located in an infinite domain. To provide
a point of comparison for the finite element
models, an analytical solution for this problem
was developed, and is described as follows.

Using the notation Uj;; to represent the

displacement in the i —direction due to a
concentrated point force, specified as

f(x,t;8)= f,(t)5(x—&)e,, applied in the
J — direction at the point &, the displacements

over the domain may be determined by solving
the following equation;

_s) s
4ﬂpuij(x,t):w jr filt-7)dr+

rla

a’r a Br

where
£ is the material density,

r= |x - §| is the distance from the source

_ X _ér g ;
Vi = T are the direction cosines of
vector, and
A+2
a=Cp, = i
Yo,
and

ﬂ:Cs:\/;:
£

represent the speeds of pressure and shear
waves, respectively. In these equations,

A, i are Lame elastic constants,

Mfo[t—L]f(yi}/jib‘ij)fO(t—L

)

This work represents the typical source force as:
f,(t)=H(t)=a’te™, where H(t) is the
Heaviside step function, a is a parameter

controlling duration and amplitude of the source,
for additional information see [1].

Three finite element models of a spherical
domain loaded by a point source were developed
in COMSOL Multiphysics. The volume was
represented in three-dimensions using a quarter
symmetric finite element model. To reduce the
computational cost of this model, two-
dimensions models where constructed using an
axisymmetric and a plane strain formulation.

2.2 Point Source in a Semi-Infinite Media

To extend this work to include surface wave, a
solution to Lamb’s problem of a source loading
at the surface of a semi-infinite domain is
developed. Again, a closed form solution was
developed as a point of comparison for the finite
element solution of this problem. In this closed
form solution, the vertical stress acting on the
free surface is denoted as 4, ;

where

f(t)=7a’0,(t) denotes the total applied
force

and

a denotes the radius of the circle over which
the stress is applied.

From this loading, the vertical displacement is
denoted wi(t) and horizontal displacements are

denoted u(t). Thus, the solution for a special
case of Lamb’s problem may be written as

i b I o

where




0, z<1/6 i x10'17: ; ;
( f+5)1 (3\/5—5)1/2 B V3 1/, i Analytical solution|
&) ( _z )1 (2'2-%—«/5/4—3/4)”2 (1'2 71/4)1/2 ' = = - FE solution
= 3.5
- 67£3\/§—+5¥, l<r<y 3 5|S o
48 (-2 {\
-7l8, >y T 25 6s b
E 2 Jo s
0, r<1/5 i | . Q
¢ [6K(k)-18M1BK" B)+ (6- 4v3)20 1243 )% k]| E T NG
cTy A PORS
1616 +(6+4v3)f20+1243 )k _ AN
A N T DN
R(r)z Ik 6K(k] 181'[( j+ 6—-4+3 {20 12 } . t p ’J I I o \\\‘
< — J‘f
1676 +16 ( + 4[)11{ 20+ 12[ :| -05 i@i 17 o
Preceding +E(TZ - ;/2)71/2 >y U o8 1 15 @ 28 A 38 9 i5 &
24 ' Arc-length [m] x10
Figure 1. Comparison of vertical displacements for
and, a three-dimensional finite element solution to a
/2 closed-form solution for point loading in an infinite
52:01/,[)’,7/=(3+\/§)l /12, domain.
N (ﬁ/r)t 23C i ith E i tal Dat
2 .3 Comparison wi xperimental Data
K2 =t gy e -1fl|! p) -1]. P P

The K (k) and 11(n, k) are complete elliptic

integrals of the first type and third types,
respectively.

This solution proves valid for Poisson’s ratio of
v =0.25. A solution for arbitrary v is given in

[2]

An axisymmetric model of a semi-infinite
domain was developed in COMSOL
Multiphysics to solve Lamb’s problem. For both
the closed-form and finite element solution, the
forcing function is described as

T T
Z <<=
2 2

#)=hcod| Zt | for —
fi=heos| ¢

For the finite element analyses conducted in this
work the period of the loading is 10 s,

(T =10us)-

The next level of complexity for this work is to
represent an actual geophysical domain over
which experimental data was taken. The model
developed previously in COMSOL Multiphysics
was modified to include measured pressure wave
speeds (c,) and shear wave speeds (c,) and to
represent the actual forcing function applied the
surface. Over a depth of thirty meters, ten
material layers that represent experimentally
measured values of ¢, and c, values were
included in the model. The pressure wave
velocity increased from approximately 650 m/s
to 2000 m/s with increasing depth. The shear
wave velocities increased from 200 m/s to 600
m/s over this range of depths.

3. Discussion
3.1 Point Source in an Infinite Media

Error! Reference source not found. shows the
comparison of vertical displacements over a
radial line from the center of the sphere. The
results show the transmission of the wave as it
moves through the infinite domain. These results
show the ability of COMSOL Multiphysics to
represent accurately the wave except for minor
variations at the peak of the wave. These



differences may be due to the mesh size used in
this model.
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Figure 2. Comparison of radial displacements for a
three-dimensional finite element solution to closed-
form solution for point loading in an infinite
domain.

Figure 2 compares the results developed for an
axisymmetric model of an infinite domain. These
results show similar accuracy compared to the
three-dimension results shown in Error!
Reference source not found.. Near the peak of
the wave, the axisymmetric model shows greater
accuracy than the three-dimensional model. This
improved accuracy may be due to the small finite
element size used in the axisymmetric models.

This work also used a plane strain formulation to
assess the ability to represent a point source
using a plane strain formulation. Figure 3 clearly
demonstrates that the plane strain formulation
provides a poor approximation to a point source.
The plane strain formulation transforms a point
source into a line source. Thus, the computed
wave form changes dramatically between the
three-dimensional and plane strain solutions.
These results indicate that an axisymmetric
formulation provides a better method to reduce
the computational cost of this problem than a
plane strain formulation.

3.2 Point Source in a Semi-Infinite Media

Figure 4 compares results developed from a
finite element analysis conducted using
COMSOL Multiphysics with the analytical
solution developed in Section 2.2. These results

show the ability of the finite element analysis to
represent accurately the wave propagation
generated from a volume source through a semi-
infinite domain. The finite element results show
the lower magnitude, faster moving P wave that
precedes the Rayleigh wave. The finite element
analyses accurately calculate the arrival time and
frequency content of this pulse. However, the
finite element analyses under predict the
magnitude of the velocity by approximately
20%.

3.3 Effects of Model Details

To compare with experimental data, a finite
element model was constructed that includes the
variation of the soil properties as described in
Section 2.3. In Figure 5, the effects of the
variable wave speed are shown compared to a
model that has homogenous material properties
equal to the first layer in the variable model.

The homogeneous model shows clearly defined
P and Rayleigh waves while the layered model
shows the wave reflections that developed due to
the variations in material properties through the
depth of the model. The shorter arrival time for
the layered model represents one interesting
feature of this comparison: the increased wave
speed below the surface of the model generates a
wave that reflects off a subsurface layer and
arrives back at the surface in less time than the P
wave traveling in the first layer of the model.

3.4 Comparison with Experimental Data

Figure 6 compares the radial velocity measured
during a well-controlled series of experiments
with results from the finite element analyses. The
magnitude of the velocities has been normalized
by the peak magnitude during the duration of the
pulse. This normalization was done to provide a
comparison using the two primary metrics of
interest in this work: arrival times and frequency
content. Prediction of the magnitude of the wave
is a secondary consideration. These results show
a reasonable agreement between the finite
element results and experimental data for the
primary factors of interest.
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4. Summary and Conclusions

The results presented in this paper demonstrate
the capabilities of a COMSOL Multiphysics to
solve wave propagation problems in finite
geophysical domains. The analyses were
conducted using computational hardware that is
readily available on the desktop. To maximize
the use of desktop hardware, this work examines
methods for reducing the problem size. For the
point source problems considered here,
axisymmetric modeling provides significantly
more accurate results compared with plane strain
modeling techniques.

This work initially focuses on solving problems
in a uniform infinite space or infinite half-space
for which analytical solutions exist. After
showing good agreement with these solutions,
additional complexity is added to represent
available experimental data. The modeling
methods developed in this work again show
good agreement with data developed. This work
shows the strong effect of including the variation
of wave speed through the top thirty meters of
the earth. By including this variation in material
properties, the wave arrival time and frequency
content agree with experimental data. Thus, this
work demonstrates that COMSOL Multiphysics
provides a useful tool for predicting wave
propagation using commercially available finite
element software with desktop computing
hardware.
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* Objective:
Demonstrate the capability of COMSOL Multiphysics to accurately solve
wave propagation problems in geophysics
 Motivation:
Reduce reliance on custom software and supercomputers by obtaining

solution using commercially available software on high-end desktop
computer

e Approach:
— Develop closed-form solutions for
» Point source in an infinite body
» Point source on the surface of a semi-infinite body (Lamb’s problem)
— Develop using solid mechanics module w/ COMSOL
« Same formulation as acoustics module
* Three-dimensional
« AXxisymmetric
» Plane strain
— Comparison w/ experimental data
« Hammer blow on surface
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e Closed-form solution developed for
— Elastic wave In infinite media
— Elastic wave Iin semi-infinite media

« Computation models developed using Solid
Mechanics Module
— Three-dimensional

— Two-dimensional
o AXisymmetric
» Plane Strain — not sufficiently accurate for point source
« Comparison with analytical solutions and
experimental data

— Agreement with arrival time, and frequency content

Advanced Computational & Engineering Services A EEE




e COMSOL Multiphysics provides a
sufficient level of accuracy for the
problems of interest

« COMSOL Multiphysics provides a
commercially available tool that can solve
wave propagation problems on desktop
computing resources
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